ISO TC184/SC4/WG11/N002

Date: August 21, 1996 Super cedes SC4/

PRODUCT DATA REPRESENTATION AND EXCHANGE

Part: Title: EXPRESS-X Reference Manual

Purpose of thisdocument asit relatesto the target document is:
X Primary Content

~ IssueDiscussion Current Status: Working
___Alternate Proposal
___ Partial Content

ABSTRACT: Theintended use of EXPRESS-X isto define mappings between pairs of EXPRESS schemas, where
one EXPRESS scheme represents an abstract view of the other. These mappings are defined in a declarative
fashion. For example, EXPRESS-X can be used to implement the mapping of entities from the AIM of an
Application Protocol to itsARM. The EXPRESS-X language controls these mapping by specifying the
conditions under which anew view entity should be created, and how the attributes should be derived for that
new view entity. EXPRESS-X combines the EXPRESS-V language (1SO TC184/SC4/WG5 N251) with the
EXPRESS-M language (1SO TC184/SC4/WG5 N243).

KEYWORDS: Document Status/Dates
\'\;'iglﬁl)f' ng Language Part Documents Other SC4 Documents
Schema X Working Dr aft 8/21/96 Working
EXPRESS Project Draft Released
Database Released Draft — Confirmed
Technically Complete | = Approved
" Editorially Complete | T
I SO Committee Draft

Owner/Editor: Alternate:
Address: Lab for Industrial Information Infrastructure Address:
Rensselaer Polytechnic I nstitute
Cll Building, Room 7015
Troy, New York 12180-3590

USA
Telephone/FAX: +1(518) 276-6751 / +1 (518) 276-2702 Telephone/FAX:
E-Mail: rose@rdrc.rpi.edu E-Mail:

Commentsto Reader

This version of the specification is compiled from the contributions of several people. Thereis ample room for
improvement not only in individual sections but also in ensuring the consistency between sections. This version
remains technically incomplete.

Contributors

J Wen

Martin Hardwick
David L. Spooner
Craig Schlenoff
John Valois

lan Bailey

Meetings

Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute
Rensselaer Polytechnic Institute
STEPTools, Inc.

CIMIO Ltd.

EXPRESS-X Reference Manual

Table of Contents

1 INtroduction 10 EXPRESS-Xcooiiiieieeiecie ettt ee st enaeeneesneenes 1
1.1 Motivation fOr EXPRESS-Xccooiiiiiiiee ettt 1
L.2What ISEXPRESS X ..ottt sttt bbb 2
1.3 Updating Views -- TWO-Way MaPPIiNGS.......cccurerimirereeieieesiesiesie s sseseseseessessessesseseessenes 2
LA DEFINITIONS.ottt sttt et e s bt e besae e s beenbeeneesbeenbeeneesreenseennens 3

2 Fundamental PriNCIPIES.......ccvoii ettt st st e s e ae e e neene e e e 4
2.1 Logical Organization for an EXPRESS-X SPeCifiCation............ccvvrererieeieenenenesesesenns 4
2.2 The MapPiNg SCHEIMA.......ccci ittt e e s re e e reesseeenbeesreeenns 4
2.3 MAENTATZING AVIBW ...ttt e e te e s ae et e e e e s re e teeneesreenseeneenreenrn 5
2.4 SPeCification Of MaPPINGScouereeieieiere ettt sttt e e e b e sbesaesbenneas 6

241 VIEW DECIAIAION........eieiitieieeie sttt sttt sttt sae e b enna s 6
2.4.2 COMPOSE DECIAIAiON.ccueeuieieiisiesiesiestesiesiee e see sttt e s seesteseesnesnens 6
243 MEMBER DeCIaralion........ccoveieiieieeieseeseseesteesieseeseesteseesseessesseesseessesnessseessesseens 7
2.5 CONfOIMANCE LEVEIS ...ttt eas 7

3 Language SPECifiCation SYNTAXcccveieerieieiieseese e se et sre e sre s e e e s reenneenee e 8
3.1 BasiC Language EIEMENLS.........coiiieieiiriesiesereeee ettt 8
A O 0= = o= S ST 8
TG =YV (o S 8
S SYMBIOIS ...t b b a et n e e b nne b nneas 8
3.5 The Logica Organization of an EXPRESS-X Specification...........ccccevveiiiveveesiiessiee s 8
3.6 Defining MappinNg SCNEMBS........cccciieiiiiieiierie et ese st e ste et e e te e e e e saeeneesneenes 8
3.7 Global Declarationsin aMapping SCREMA.cccoieiiirirereereeeeeee e 9
3.8 Other Declarationsin aMapping SChema..........cccoccv i 10
3.9 The Logical Organization of aView Mapping Declaration...........c.ccecevevvvceereeiesieeseennns 11
3.10 THE FROM ClaAUSE.....cueeeieeiesieeieeieesteeieeeesteeee e sseesteeseesteetesseesseenseeneesseenseenensseensnansens 12
S 1L TREWHEN ClAUSE......cciuiiieiieeiieiieie e sie sttt stesaesbesbeesesseese e e e sestesseseenresne e 13
3.12 The Logical Organization of a Compose Mapping Declaration............ccccceveveveriveneennnns 14
3.13 Statements in View and Compose Mapping Declarations............c.cccoeveneneniencnenennne 15

3.13.1 Enhanced ASSIgNMENt StAEEMIENTccecveiieiicee e 15
3.13.1.1 Coercion in ASSIgNMeNt SEateMENEScooveierererereeeeeee e 16
3.13.1.2 Enhancements to Expressions in Assignment Statements............cccceeereenene 17
3.13. 1.3 ThE IS OPEIELOL.......ccueeieeie et ettt ste e ste e sr e ae e e reeresneesneenneas 18
3.13.1.4 Casting iN EXPrESSIONS.......coouiiiirieriesieriesieeee et sse s seesse e see s 18
3.13.1.5 Reference to a Manually Instantiated Entity INStancec.ccveevevceeneennnne 19

3.13.2 FROM SEBLEIMENES.....cviivirieeiieieieesiesiesiesiesieseseeeeseeseessestessesse e seeneeseessessessessessens 19

3. 13.3WHEN SEALEMENTS......coiiieiieeiie ettt st sbe e ne e sre e see e nne e 20

3.13.4 INitialiZe STAEMENL ..o 21

3. 13.5 DELETE SEAEMENTocviriieiieieiesie ettt sttt 21

11

EXPRESS-X Reference Manual

3.13.6 Instantiation SEALEMENT..........cccveiieeereere e sreenre e sneenes 22

3.14 The Logical Organization of aMember Mapping Declaration.............cccoceveeienieniennnnns 22
3.15 Structure of aMappPiNg SCNEMAL.........ccoi e 24
Appendix A: EXPRESS-X EXAMPIE L......oiiiiieieeeee et 26
Appendix B: EXPRESS-X EXQMPI@ 2........ooiiiiee ettt 29
Appendix C: EXPRESS-X EXAMPIE 3 ...ttt 31
Appendix D: EXPRESS-X EXAMPIE 4 ..ot 36
Appendix E: EXPRESS-X EXaMPIED5........ooiiie ettt 40
Appendix F: EXPRESS LaNQUAQgE SYNTAXcccueieerieeierieerieeeeseesteseesseesseseesseessesseessesssesssesns 42
e o= £ S 42

e R I L= VATV 0 {0 <SPPSR 42

F.1.2 CharaCler ClaSSES........ooiiiiierieiieiieee ettt bbb sbenre s 44
F.L3LEXIiCal EIBMENES......c.eiiiiieciieieeee ettt st enne e 45

I s 0 7= PR 45

F.L.5 Interpreted IAeNtifierS.o e 45

F.2 Grammar RUIEScoiiiiieie ettt et sreenae e e e nneenns 45
Appendix G: EXPRESS-X Extensionstothe EXPRESS Language..........ccccoevveveieenieennene. 51
(T R Ko 1= 1SN [0 o S 51
G.2 SyntaxX RUIESATUE ..o 51
G.3 Modifications or Extensions To The Existing EXPRESS Syntax RUles...........ccccccceuenie. 53

EXPRESS-X Reference Manual

Foreword

This document describes the EXPRESS-X language, which currently is not an official Part of 1SO
10303. The document has been prepared by the Laboratory for Industrial Information Infrastruc-
ture at Rensselaer Polytechnic Institute, who developed the EXPRESS-V language (1SO TC184/
SC4/WG5 N251). It incorporates concepts from the EXPRESS-M language developed by
CIMIO, Ltd. (ISO TC184/SC4/WG5 N243).
Thisis aWorking Draft.
The EXPRESS-X language described in this document is related to a series of Parts which
together comprise the International Standard | SO 10303 Industrial Automation Systems - Product
Data Representation and Exchange. The Parts are as follows:

-- 1SO 10303-1 Overview and Fundamental Principles,

-- 1SO 10303-11 Description Methods: The EXPRESS L anguage Reference Manual;

-- 1SO 10303-21 Clear Text Encoding of the Exchange Structure;

-- 1SO 10303-22 STEP Data Access I nterface Specification

-- 1SO 10303-31 Conformance Testing Methodology & Framework: General Concepts,

-- 1SO 10303-41 Integrated Generic Resources. Fundamentals of Product Description and Sup-
port;

-- 1SO 10303-42 Integrated Generic Resources. Geometric and Topological Representation;
-- 1SO 10303-43 Integrated Generic Resources. Representation Structures,
-- 1SO 10303-44 Integrated Generic Resources. Product Structure Configuration;
-- 1SO 10303-46 Integrated Generic Resources. Visual Presentation;
-- 1SO 10303-101 Integrated A pplication Resources. Draughting;
-- 1SO 10303-201 Application Protocol: Explicit Draughting;
-- 1SO 10303-203 Application Protocol: Configuration Controlled Design.
The reader may obtain information on these Parts of 1SO 10303 from the SO Central Secretariat.

EXPRESS-X Reference Manual

1 Introduction to EXPRESS-X

ISO 10303 is a series of International Standards for the computer-sensible representation and
exchange of product data. The objective is to provide a mechanism capable of describing product
data throughout the life cycle of a product, independent from any particular system. The nature of
this description makes it suitable not only for file exchange, but also as a basis for implementing
and sharing product databases and archiving.

Each International Standard in the 1SO 10303 series is published as a separate Part. Parts are
grouped into one of the following classes: description methods, integrated resources, application
protocols, implementation forms, and conformance testing. The classes are described in 1SO
10303-Part 1.

This document describes the EXPRESS-X language, which can be used to define mappings
between entities from one EXPRESS schema to entities in another schema that represents an
abstract view of the first. This satisfies an industrial need to easily tailor information models to
meet the needs of individual application systems.

Major subdivisionsin this reference manual are:
-- Introduction to EXPRESS-X
-- Fundamental Principles
-- Language Definition
-- Examples of EXPRESS-X
-- Syntax Rules for EXPRESS-X

The remainder of this introduction provides the reader with background on the EXPRESS-X con-
cept and the definitions of key terms.

1.1 Motivation for EXPRESS-X

By its nature, a representation and exchange standard for product data such as STEP must be
complete and unambiguous. As aresult, it is large and contains details that many individual appli-
cation systems will not need. In other words, it is the union of the requirements of these applica-
tion systems. Thisimpliesthat asimplified view of a product model that omits unnecessary details
of the model should be sufficient for many applications. Using such asimplified view is desirable
for these application systems, since such aview is conceptually easier to understand and process
within the application system. Thisis especially true for legacy systems.

Unfortunately, the optimal simplified view of a product model for one application system may not
be the optimal view for another application system, even if the two systems are related. As a
result, there is a need to be able to easily create views of product models that are tailored to indi-
vidual application systems.This will in general improve the usability of the STEP standards in
many situations.

In STEP, a product model is defined using EXPRESS. This means that a view of a product model
must be based on the EXPRESS definition of that product model. Thus, for STEP, alanguage is
needed that facilitates definitions of views of EXPRESS information models. Thisis the purpose
of EXPRESS-X. It is an extension of EXPRESS that includes constructs for defining views of
EXPRESS information models.

EXPRESS-X Reference Manual

Thus, the goal of the EXPRESS-X language is to define mappings between information models
defined in EXPRESS as shown in Figure 1. An implementation of the EXPRESS-X language
must include a compiler for validating the syntax of an EXPRESS-X definition and a run-time
system for materializing aview.

EXPRESS K—\ View _
Information

Information EXPRESS-X
Model Language Model

¥ ¥
/ \ EXPRESS-X / View \

Run-time Instance
Instance Materialization
[) »
] [] <?>\ *
° I N
° ® e

Ce g M

FIGURE 1. EXPRESS-X Overview

1.2 What is EXPRESS-X

EXPRESS-X allows one to create alternate representations of EXPRESS models and mappings
between EXPRESS models and other applications (e.g., IGES). These alternate representations
are called views of the origina models. The algorithm for deriving the entity typesin aview from
the entities in an original EXPRESS model is specified using various types of mapping declara-
tions.

Creation of aview of an EXPRESS model requires two phases. materialize and compose. In the
materialize phase, the view entity instances are created, along with those attributes of the new
view instances that depend only on data from the entities in the original EXPRESS model. In the
compose phase, attributes of the new view instances that depend on other view instances, and
hence could not be initialized during the materialize phase, are created. An example of such an
attribute is one that represents a relationship between view instances. More than one pass may be
needed in the compose phase if complex dependencies exist between the attributes.

1.3 Updating Views -- Two-Way Mappings

In many situations, it is desirable to allow changes made to the entity instances in a view to be
mapped back to the original EXPRESS model from which the view was created. This can be done
in EXPRESS-X by defining a second set of mappings (i.e., a second SCHEMA- MAP as defined in
Chapter 3) that maps from a view back to the original model. In this case, since the entity
instances already exist in the original model, only a compose phase is needed.

EXPRESS-X Reference Manual

An example of updating viewsis given in Appendix E.
1.4 Definitions

The EXPRESS-X language uses terminology consistent with that of EXPRESS whenever possi-
ble. Definitions of terms that are not part of EXPRESS follow:

View: An abstraction of an information model tailored for some application system or user that
omits unnecessary details and reorganizes the remaining information into amore easily used form
for the application or user.

Base Schema: An EXPRESS information model.

Base Model: An instantiation of a base schema.

Base Entity Type: An entity type defined in a base schema.

Base I nstance: An instance of an entity type defined in a base schema.

View Schema; An EXPRESS information model that defines entities derived from the entitiesin
a base schema.

View Model: An instantiation of aview schema.

View Entity Type: An entity type defined in aview schema.

View instance: An instance of an entity type defined in a view schema.
Materialize: The process of creating aview model from a base model.

Mapping Schema: An EXPRESS-X schemathat defines the detailed algorithms for mapping the
entity types from a base schemato aview schema.

M apping: A declaration in amapping schemathat defines the algorithm for mapping a base entity
type to aview entity type.

EXPRESS-X Reference Manual

2 Fundamental Principles

In database terminology, a view is a perspective of a database. There may be many views for a
given physical database, each view tailored to the requirements of a particular application pro-
gram or user. A view may omit parts of the database that are of no interest to the application sys-
tem or user for which the view was created. It may reorganize the database by changing its
structure and/or the data types of the datait contains. The goal of creating aview isto simplify the
use of the database by the application system or user for which the view was created.

2.1 Logical Organization for an EXPRESS-X Specification

The specification of a view using EXPRESS-X requires the definition of three schemas, two of
which are ordinary EXPRESS schemas (see Figure 2). Thefirst of theseis called the base schema
and defines the schema for the original product model from which the view will be derived. The
second of these is the view schema which defines the product model for the materialized view -
i.e., the entity types that will be in the view and the attributes for each of these entity types. Both
these schemas are defined as ordinary EXPRESS schemas.

The third schema is the mapping schema and is defined using the EXPRESS-X language. The
mapping schema defines mappings between entities in the base schema and the view schema.
Each mapping specifies some or all of the following information:

* A group of entity types in the base schema from which an entity type in the view schema
is created,

* A predicate defined over this group of entity types from the base schema that specifies the
conditions that must be true for a new instance of the view entity type to be created, and

» Specifications of how the values for each of the attributes of a new view instance are to be
computed once the new view instance is created.

2.2 The Mapping Schema

As shown in Figure 2, a mapping schema defines a relationship between information models
defined as SCHEMA's in EXPRESS. The mapping schema itself is also an information model
defined as a SCHEMA_MAP in EXPRESS-X. A mapping schema (i.e., SCHEMA_MAP) is defined so
that:

* one can better understand the relationship between the two schemas, and

* aninformation processing system (e.g., an EXPRESS-X compiler) can create a data pro-
cessing system that will convert information belonging to one of the schemas (i.e., the
base schema) into information belonging to the other schema (i.e., the view schema).

The first role is considered the more important role. A good EXPRESS-X mapping schema
defines the relationship between two schemas in away that is ssmple and easy to understand. If a
particular mapping cannot be described in a straightforward manner in EXPRESS-X, then it may
be represented as a mapping with only a comment in its declaration that describes informally the
mapping that would be defined if sufficient resources existed to produce it.

For example, if a mapping declaration requires a statistical analysis that can only be performed
using advanced numerical techniques, then the body of the declaration may contain only a com-
ment that provides areference to the algorithm in the literature.

/ Base Schema \

(Ordinary EXPRESS)

=X

/Mapping Schema\

EXPRESS-X Reference Manual

/ View Schema \

(Ordinary EXPRESS)

I

2

@ Entity Type

_//

- Mapping Specification \ /

FIGURE 2. Three Schemasin an EXPRESS-X Specification

Conceptually, it is convenient to think of a mapping schema as defining mappings (see section 2.4
below) between a base schema and a view schema. In practise, however, a mapping schema can
define mappings between any set of entity types, independent of the schema or schemas from
which they come. In fact, a mapping schema can reference entity types from many schemas, not
just two. It is also the case that the EXPRESS-X language has no construct to specify which
schema is a base schema and which is aview schema.

The concepts of base schema and view schema will be used throughout the rest of this manual to
simplify the explanation of how the various constructs in the EXPRESS-X language work. In
most examples in the manual two schemas are used, one that plays the role of a base schema and
one that plays the role of a view schema. However, it isimportant to keep in mind that there are
no physical restrictions on any of the constructs in the EXPRESS-X language with respect to the
schemas on which they operate.

2.3 Materializing a View

As illustrated in Figure 2, an EXPRESS-X specification defines a mapping between a group of
entity types in the base schema and a group of entity types in the view schema. To materialize a
view model (i.e., an instantiation of a view schema) from a base model (i.e., an instantiation of a
base schema), each of the mapping specifications must be applied to the appropriate entity
instances in the base model. This requires applying the mapping to all combinations of base
instances that participate in that mapping.

For example, the top mapping in Figure 2 is defined between three entity types in the base schema
and one in the view schema. To materialize this mapping, it iS necessary to consider every combi-
nation of an entity of the first type in the base schema with an entity of the second and third types
in the base schema. For each combination of entities, the predicate in the mapping that defines the
conditions for creation of a view instance must be evaluated. If the predicate evaluates to true, a
new view instance is created.

Once a new view instance is created in the view model, it is necessary to compute values for its
attributes. In many cases, these values can be derived directly from the attribute values of the base
instances from which the view instance is created. In these cases, a simple assignment statement

EXPRESS-X Reference Manual

that defines the derivation computation is all that must be specified for each attribute. In other
cases, however, the computation of a value for an attribute may not be as straightforward. Con-
sider, for example, two view instances that are related in some way, and this relationship is mod-
eled by having one or both of the view instances point to the other. When thefirst view instance is
created, the second may not yet exist in the view model. If the first view instance isto point to the
second, then the attribute of the first view instance that is to point to the second must remain tem-
porarily uninitialized. Its value must be initialized at a later time once the second view instance
has been created.

2.4 Specification of M appings

A mapping schema in EXPRESS-X (i.e., a SCHEMA_MAP) defines the relationship between two
information models using three types of declarations: VI Ewy COMPOSE and MEMBER. An information
processing system uses these three types of declarations to create data processing functions that
automate mappings between a set of schemas.

2.4.1 VIEW Declaration

A VI Ewdeclaration specifies how to construct a particular entity type. It contains a FROM clause
that identifies the base entity types from which the new entity type is created. It contains a WHEN
clause that specifies the conditions that must be true for a new instance to be created. And it con-
tains a body that specifies how to compute the values of the attributes for new instances.

Logically, the FROV clause creates an iteration over al combinations of instances for the entity
typesit lists. For each combination, the condition in the WHEN clause is evaluated. If true, a new
instance is created.

For example, consider the following declaration:

VIEWvV : vdb::Viewentity
FROM (ba : bdb:: BaseA, bb : bdb:: BaseB)
WHEN (ba.attrl > bb.attr2) AND (ba.attr2 > 0));

BEG N_VI EW
v.v_attrl := ba.attrl;
v.v_attr2 := bb.attr2;
END_VI EW

This declaration says that view entities of type Vi ewent i t y are to be created from base entities of
type BaseA and BaseB. The identifiers vdb and bdb are used to specify the view schema and the
base schema, respectively, and are defined el sewhere in the mapping schema. The variablesv, ba,
and bb are implicitly declared in this view declaration to represent instances of entity types Vi e-

WENt i ty, BaseA and BaseB, respectively. The FROV clause sets up an iteration over combinations
of entity instances of type BaseA and BaseB in a base model. The WHEN clause creates a new view
instance only for those combinationsin which at t r 1 of the BaseAinstance is greater than at t r 2
of the BaseB instance and in which at t r 2 of the BaseA instance is greater than zero. The values
for the attributes of a new view instance are copied from the attributes of the base instances.

2.4.2 COMPOSE Declaration

A COVPCSE declaration can be used in conjunction with a vi Ewdeclaration when it is not possible
to compute the values for all attributes of aview entity type when itsinstances arefirst created. As
discussed above, it is sometimes necessary to perform multiple passes to compute the values for
attributes when complex relationships exist between view entity types.

EXPRESS-X Reference Manual

A covPOsE declaration is much like a vi Ewdeclaration except that it iterates over the instances of
an existing entity type. Also, it does not create new instances as a VI Ewdeclaration does; rather it
computes values for attributes of existing instances of an entity type. The syntax is similar to a
VI Ewdecl aration except that the word “ COVWPOSE” replaces the word “vi EW and the FROMclause is
optional.

If a COVPCSE declaration contains a FROM clause, then the FROM clause creates an iteration over al
combinations of the instances for the entity types that it lists along with all instances of the entity
type being composed. If no FROMclause is used, then an iteration is created over just the instances
of the entity type being composed. In either case, the WHEN clause restricts when the body of the
COVPOSE declaration is applied.

2.4.3 MEMBER Declaration

A MEMBER declaration defines the entity types from a base schema that affect the value of an entity
type in the view schema. In other words, a MEMBER declaration defines information about the rela-
tionships between two schemas (as do the other three types of declarations).

The MEMBER declaration has several usesin EXPRESS-X. For example, an information processing
system may use a MEMBER declaration to specify when the value of a view entity type should be
recomputed in response to changes in a base model. It may also use a MEMBER declaration to spec-
ify which entity types should be copied from a base model to aview model for a deep copy of an
entity type that is mapped to aview.

A MEMBER declaration may also contain FROMand WHEN clauses. If present, they operate as they do
for the COVPOSE declaration. That is, the FROM clause increases the combinations of instances to
which the body of the MEMBER declaration is applied. The WHEN clause restricts these combinations
to just those that satisfy the conditions imposed in the WHEN clause.

2.5 Conformance Levels

An EXPRESS-X mapping schema defines the relationships between a set of information models
using a combination of VI Ewy COVPOSE, and MEMBER declarations. A system using EXPRESS-X
may choose to conform to the specifications using the following conformance classes.

Class1

A Class 1 system processes only VI Ewdeclarations with a FROM clause that contains a single base
entity type. A system that conforms to this level must alow a user to apply a vi Ewdeclaration to
the instances of any single base entity type in a base schema. The result is the creation of view
entity instances of a single view entity type belonging to a view schema.

Class?2

A Class 2 system processes VI Ewy COMPOSE and MEMBER declarations. A system that conforms to
this level must allow a user to apply Vi Ewand MEMBER declarations to one or more base entity
instances. The result is the creation of one or more view entity instances.

Class 3+

Additional conformance classes are reserved for extensions to be defined during the 1SO standard
development process.

EXPRESS-X Reference Manual

3 Language Specification Syntax

This section defines the syntax of the EXPRESS-X language using a notation that is similar to the
Wirth Syntax used to define EXPRESS in 1SO 10303 Part 11.

The base schema and the view schema are defined using standard EXPRESS and are not dis-
cussed further in detail. The mapping schema, which defines the mappings between the base and
view schemas, is done using the new constructs in the EXPRESS-X language, and is discussed in
detail in this section.

3.1 Basic Language Elements

The basic language elements for EXPRESS-X are similar to those in EXPRESS. An EXPRESS-X
specification is composed of streams of text broken into physical lines composed of characters
and ended by a newline character.

3.2 Character Set

See | SO 10303 Part 11, section 7.1 for details.

3.3 Keywords

The following EXPRESS-X keywords are not part of the EXPRESS language (they may be spec-
ified in upper, lower, or mixed case):

BEG N_COMPOSE BEG N_MEMBER BEG N_VI EW COVPCSE
DECLARE DELETE END_COMPOSE END_GLOBAL
END_MEMBER END_SCHEMA MAP END VI EW EXCLUDE
GLOBAL | NSTANCE IS MEMBER
NEW SCHEMA_MAP VI EW VHEN

All other keywords in EXPRESS-X are defined as in EXPRESS (see SO 10303 Part 11, section
7.2 for details).

3.4 Symbols
See SO 10303 Part 11, section 7.3 for details.
3.5 TheLogical Organization of an EXPRESS-X Specification

syntax = schema_decl { schena_decl } .

An EXPRESS-X specification consists of one or more mapping schemas, each of which defines
the required view materialization process for aview of an EXPRESS model.

3.6 Defining M apping Schemas
schema_decl = SCHEMA MAP schema_id ‘;’ schenma_body END SCHEMA MAP *;’

A mapping schema specification in EXPRESS-X is similar to a schema specification in
EXPRESS.

schema_body = { interface specification } [constant _decl] { global decl }

EXPRESS-X Reference Manual

{ declaration | rule_decl } .

The specification of the body of a mapping schema in EXPRESS-X has the same form as the
specification of the body of a schema in EXPRESS, with two exceptions. When defining a map-
ping schema, it is necessary to create declarations that define the mappings. As a result,
EXPRESS-X has an expanded set of allowable declarations for use in defining the mapping
schema. It is aso necessary in EXPRESS-X to include a globa section that identifies the base
schema and the view schemafor the mappings.

3.7 Global Declarationsin a Mapping Schema

The base and view schemas referenced in a mapping schema are declared in aglobal section at the
beginning of the mapping schema. These declarations provide a unique name for each base
schema and view schema used in the mapping schema. Among other things, these unique names
are used throughout the mapping schema to qualify entity type names that are shared between
multiple schemas.

gl obal _decl = GLOBAL { schena_instance_decl | instantiation_clause }
END GLOBAL

schema_i nst ance_decl = DECLARE schena_instance_id | NSTANCE OF schenma_id

schema_instance_id = sinple_id .

schema_id = sinple_id .
The global section can also include instantiation definitions for instances of the entity types
defined in the base and view schemas. Instances manualy instantiated in this way are given
names beginning with the character ‘# to distinguish them. The syntax for specifying a manually
instantiated instance is taken from EXPRESS.

instantiation_clause = instance_id '='" entity_constructor '

i nstance_id "#' extended_id

extended_id = [schema_id '::"] sinple_id
entity_constructor = entity ref "(' [expression { '," expression}] ')’

The following is an example of aglobal declaration in a mapping schema.

GLOBAL

(* schema instances *)
DECLARE bdb | NSTANCE OF base_schenm;
DECLARE vdb | NSTANCE OF vi ew_schenm;

(* manual instantiation
The foll owi ng creates two nmanual instances, 'hh' and '"ww . These
i nstances becone part of the view nodel identified by 'vdb'.
*)
#vdb: : hh
#vdb: : ww

bdb: : MALE(' Tony Blurb', 39, #vdb::ww);
bdb: : FEMALE(' Amanda DeCadanet', 25, #vdb::hh);

EXPRESS-X Reference Manual

END_GLOBAL;

3.8 Other Declarationsin a Mapping Schema

declaration = entity_decl | function_decl | procedure_decl | type_decl |
vi ew_decl | conmpose_decl | menber_decl

Other declarationsin amapping schemaare similar to those in EXPRESS, with the addition of the
three new types of declarations for defining mappings (i.e., VI Ewdeclaration, COVPCSE declara-
tion and MEMBER declaration).

Before going on, it is useful to see an example mapping schema. To show such an example, it is
necessary first to define the base schema and view schema that will be used by the mapping
schema. To do this, consider the following two schemas, one of which is named Base_Schema
and the other Vi ew_Schema. Entitiesin the vi ew_Schenma schemawill be derived from the entities
inthe Base_Schenma schemawhen the view is materialized.

SCHEMA Base_Schenm; SCHEMA Vi ew_Schenm;
ENTI TY BaseA; ENTITY ViewEntity;
int_al: | NTECER, int_vl : | NTEGER
str_a2: STRI NG real _v2: REAL;
END_ENTI TY; str_v3 : STRING
END_ENTI TY;
ENTI TY BaseB;
conpl ex_bl: BaseA; END_SCHEMA,;
str_b2 : STRING
END_ENTI TY;

ENTI TY BaseC,
real _cl: REAL;
str_c2 : STRING
END_ENTI TY;

END_SCHEMA,
The skeleton of a mapping schema that defines the view materialization process for these two
schemas is shown below. In this mapping schema, aVvi Ewdeclaration is used to specify how enti-
ties of type Vi ewent i t y are created from the entity types in the base schema.
SCHEMA MAP Mappi ng_Schenms;
GLOBAL
DECLARE bdb | NSTANCE OF Base_Schenms;
DECLARE vdb | NSTANCE OF Vi ew _Schenms;
END_GLOBAL;
VIEWvV : vdb::Viewentity ;

END_VI EW

10

EXPRESS-X Reference Manual

END_SCHEMA_NAP;

The vi Ewdeclaration in the mapping schema above defines the details of the mappings required to
materialize aview of the base schema. The details for specifying these mappings are presented in
the following sections.

3.9 TheLogical Organization of a View Mapping Declaration
view decl = view head [algorithmhead] { stnt } END VIEW '

A VI Ewdeclaration specifies how base instances of one or more types are to be mapped to view
instances. A VI Ewdeclaration consists of a header and view statements. The purpose of the view
header is to define the conditions under which a new view instance should be created in a view
model from one or more base instances in a base model. The purpose of the view statements are to
define how the values of the attributes for a newly created view instance are to be computed. The
view declaration can also contain local definitions that will be needed by the view statements (i.e.,
al gorit hm head).

vi ew_head = VI EW general head from head when_cl ause BEG N VI EW .

general _head = ((nane_id FOR extended_entity ref) | extended_entity_ref)

nane_id = sinple_id .
extended_entity ref = variable_id ':' paraneter_type .

A view header begins with the keyword vi Ewfollowed by the name of aview entity type defined
in aview schema. This entity type name can be any valid extended entity reference (see below),
and it defines the type of entity that is created in the view model by this view definition. Option-
ally, the entity type name can be preceded by a unigque identifier and the keyword FOR. This is
useful to uniquely identify Vi Ewdeclarations when more than one declaration is required for the
same entity type.

An extended entity reference names an entity type defined in a schema. It begins with the decla-
ration of a variable name to be used in the mapping declaration to refer to instances of the identi-
fied entity type. The variable nameisfollowed by acolon (i.e., *: ') and a schema instance name
defined in the global section of the mapping schema. The schema instance nameisfollowed by an
entity type name separated from the schema instance name with two colons(i.e., *: : ’). The entity
type name must be declared in the schemaidentified by the schemainstance name.

Examples of extended entity references are shown below:

b : bdb::BaseEntity ;

v . vdb::Viewkntity ;

The remainder of the view header contains a FROM clause and a WHEN clause. The former defines
the base entity types in a base schema from which new view instances are to be materialized. The
|atter defines the conditions that must be true for the materialization of aview instance to be done.
Both are discussed in detail in the next sections.

11

EXPRESS-X Reference Manual

Inside the view mapping is a sequence of statements that defines how values for the attributes of a
newly created view instance should be computed. These statements are described in a later sec-
tion.

As an example, a complete mapping schemafor the example started above is the following:

SCHEMVA_NMAP Mappi ng_Schenms;

GLOBAL
DECLARE bdb | NSTANCE OF Base_Schenm;
DECLARE vdb | NSTANCE OF Vi ew_Schens;
END_GLOBAL;

VIEWvV : vdb::Viewentity ;
FROM (ba : bdb:: BaseA, bb : bdb::BaseB, bc : bdb:: BaseC)
WHEN ((ba.int_al = bb.conplex_bl.int_al) AND

(NOT (bc.real _cl > 10.0)));

BEG N_VI EW

v.int_vl = 100;

v.real _v2 := -bc.real _cl;

v.str_v3 = "'"This is a view object’;
END_VI EW

END_SCHEMA_NAP;

In this example, view instances of type Vi ewent i t y are created from every combination of base
instances of type BaseA, BaseB, and BaseC, for which the WHEN clause is true. The BEG N_VI EW
clause defines the computations required to initialize the attributes of the new view entity
instances that are created.

3.10 TheFROM Clause

fromhead = FROM ' (' extended_entity_ref { ',' extended_entity_ref }
1)I

The FROMclause defines the base entity types from which anew view instance is to be created and
its attributes initialized. Note that a view instance can be created and its attributes initialized from
many entity types, not just one, by listing multiple base entity typesin the FROMclause.

The names of the entity typesin the FROViclause are specified as extended entity references, where
each reference identifies a variable name, schema name, and entity type name as defined above.

In the example mapping schema above (i.e., Mappi ng_Schena), the FROM clause has the form:

FROM (ba : bdb::BaseA, bb : bdb::BaseB, bc : bdb:: BaseC

All three entity types are defined in the base schema (i.e., Base_Schena) and can be referenced
with the variable names ba, bb, and bc, respectively. In this example, the FROM clause means that
the creation of view instances of type Vi enent i t y will be based on these three types of base enti-
tiesin the base schema.

12

EXPRESS-X Reference Manual

Conceptually, the FROM clause of a view definition defines an iteration over the instances of a set
of base entity types. This iteration produces every combination of base instances for the base
entity types listed in the FROM clause. For each combination of base instances, the WHEN clause is
evaluated and, if true, anew view instanceis created and its attributes initialized.

For example, the FROVIclause above (i.e., FROM (ba : bdb: : BaseA, bb : bdb:: BaseB, bc :
bdb: : BaseC)) creates the following iteration during the materialization process:

for each {ba] ba is an instance of type bdb:: BaseA}
for each {bb] bb is an instance of type bdb:: BaseB}
for each {bc| bc is an instance of type bdb:: BaseC}
begi n
eval uate the WHEN cl ause for (ba, bb, bc)
if the WHEN cl ause is true
then create a new view i nstance of type
Viewentity and initialize its
attributes
end

The scope of the variable in each extended entity reference in a FROM clause is the view declara-
tion containing the FROMclause. The variable name must be unique for each extended entity refer-
encein aFrRoMclause. The value of the variable is assigned as part of the iteration created by the
FROMclause.

Note that a I Ewdeclaration creates a new instance of the view entity type for every combination
of base instances listed in the FROMV clause, unless the WHEN clause in the Vi Ewdeclaration evalu-
ates to FALSE for a particular combination. There are no other restrictions imposed by a vi Ewdec-
laration on creation of new view instances. This means, for example, that if a Vi Ewdeclaration is
executed twice, the same set of view instancesis created twice. If thisbehavior isundesired, then
it must be prevented using the WHEN clause for the Vi Ewdeclaration.

3.11 TheWHEN Clause

when_cl ause = WHEN donain_rule ‘;’ { domain_rule ";' } .

The WHEN clause of a view declaration defines the conditions under which a new view instance is
created and its attributes initialized. It consists of the keyword WHEN followed by one or more
expressions, separated by semicolons. Each of these expressions is a domain rule as defined in
EXPRESS.

Conceptually, the WHEN clause of a view declaration is evaluated for every combination of entity
instances specified in the FROVIclause (or COVPOSE clause, see below). For each combination that
produces a value of TRUE for all the expressions in the WHEN clause, a hew view entity is created
and the values of its attributesinitialized. The newly created view instance is assigned to the vari-
able specified in the extended entity reference that defines the view entity type created by the view
declaration containing the WHEN clause. This allows statements within the view declaration to
refer to the new view instance (see below).

In the example mapping schema above (i.e., Mappi ng_Schema), the WHEN clause has the following
form:

VIEWvV : vdb::Viewentity ;

FROM (ba : bdb:: BaseA, bb : bdb::BaseB, bc : bdb:: BaseC)
WHEN ((ba.int_al = bb.conplex_bl.int_al) AND

13

EXPRESS-X Reference Manual

(NOT (bc.real _cl1 > 10.0)));

The expression in the parentheses is evaluated once for each combination of base instances of
type bdb: : BaseA, bdb: : BaseB, and bdb: : BaseC generated by the preceding FROM clause. For
each combination of base instances for which the expression is TRUE, a new view instance of type
Vi ewent ity iscreated. Thisnew view instanceisused toinitialize variablev so that other parts
of the view declaration can refer to the new view instance. Note that in the expression, ba, bb,
and bc function as variables whose current value is defined by the current combination of base
instances produced by the FROMclause iteration.

3.12 The Logical Organization of a Compose M apping Declar ation

Whereas the VI Ewdeclaration defines an iteration over a set of base instances for the purpose of
deriving new view instances from the base instances, the COVPOSE declaration is used to define an
iteration over the view instances of a particular type that have already been created in a view
model. This might be done, for example, to compute relationships between view instances that
could not be computed earlier because not all the related instances had been created yet. Thus, the
COVPCSE declaration is used to set up multiple passes in EXPRESS-X for computing the values of
view instance attributes .

conpose_decl = conpose_head [al gorithm head] stnt {stnt}
END_COWPCSE ' ;'

The covwposE declaration begins with a header, and ends with the keyword END_COWPCSE. In-
between is a series of statements computing the values of attributes for view instances of a partic-
ular type. Asin a VI Ewdeclaration, a COVPCSE declaration can contain local definitions that will
be needed by the statements it contains.

conpose_head COWOSE general _head [fromhead] when_cl ause

BEG N_COVPCSE .

general _head ((nane_id FOR extended_entity ref) | extended_entity_ref)

nanme_id = sinple_id .

The header for a COWPOSE declaration begins with the keyword covPase and is followed by the
name of aview entity type that has already been materialized. This view entity type name is spec-
ified as an extended entity reference (i.e., variable : schema::entity type). This creates an iteration
over all view instances of that type. Likein awvi Ewdeclaration, the view entity type named in the
COVPCSE declaration can be preceded by a unique identifier and the keyword FOR. This provides a
unique identification for the COVPOSE declaration when more than one such declaration is needed
for the same view entity type.

Next in the COVWPOSE declaration is an optional FROMclause. If present, this FROM clause augments
the iteration described in the preceding paragraph by combining it with additional nested itera-
tions for all combinations of instances of the entity types listed in the FROMclause. These itera-
tions are similar to those created by the FROViclause in a Vi Ewdeclaration.

Next in the COVPOSE declaration header is a WHEN clause that defines the conditions that must be
met by the current combination of entity instances in the iteration to apply the mapping defined in
the rest of the cOMPOSE declaration. This WHEN clause is defined exactly as discussed above.

Finally, the cOVPOSE declaration header ends with the keyword BEG N_COVPOSE.

14

EXPRESS-X Reference Manual

Inside the COVWPOSE declaration is a sequence of statements that defines how values for the
attributes of a view instance should be computed. These statements are described in a later sec-
tion.

As an example of a COVPCSE declaration, consider the following:

COWOSE v : vdb::Viewentity ;
WHEN (v.real _v1 > v.int_vl);
BEG N_COVPCSE

v.int_vl :=v.real_v2;
END_COVPCSE;

This COVWPCSE declaration creates an iteration over view instances of type Vi ewentity. During
each iteration, the variable v isinitialized with a different instance of this type.

3.13 Statementsin View and Compose M apping Declar ations

The declarations Vi Ewand COVPOSE are somewhat anal ogous to the declaration of subprogramsin
programming languages. As such, they can contain constant declarations, local variable declara-
tions and sequences of statements that specify the details of a mapping.

EXPRESS-X has sixteen types of statements for use inside Vi Ewand COMPOSE declarations.
Many of these statement types are taken directly from EXPRESS. Those that are either not in
EXPRESS or are modified from their definition in EXPRESS include: the assignment statement,
the FROM statement, the WHEN statement, the initialize statement, the DELETE statement, and the
instantiation statement.

stm = alias_stmt | assignment_stnt | case_stnt | conpound_stnt
| delete_stnt | escape_stnmt | fromstnt | if_stmt | init_stnt
| instantiation_stm | null_stm | procedure_call_stm
| repeat_stnt | return_stnt | skip_stnt | when_stm

3.13.1 Enhanced Assignment Statement

assignment _stnmt = [coercion] general _ref { qualifier } (":=" | "+=" | "-=")
expression ‘

An assignment statement is used to define the computation required to compute the value for an
attribute in a mapping declaration and uses the typical assignment statement format found in pro-
gramming languages such as Pascal and C. It is aso similar to the assignment statement in
EXPRESS. On the left of an assignment operator (e.g., ‘: =") isthe name of an entity attribute with
any necessary qualifications (e.g., group or index qualifiers). On the right of the assignment oper-
ator is an expression, the value of which is used to initialize the attribute specified on the left of
the assignment operator.

If the type of the value produced by the expression on the right of the assignment operator has a
simpletype (i.e., Nunber, | nt eger, Real , Bool ean, Logi cal , Stri ng, Or Bi nary), then thisvalue
isused to initialize the attribute specified to the left of the assignment operator. On the other hand,
if the type of the value produced by the expression is not a simple type, then apointer to the value
is assigned to the attribute specified to the left of the assignment operator.

In addition to the standard assignment operator (i.e., ‘: =), there are two special versions of it with
the following meanings:

15

EXPRESS-X Reference Manual

A += expression isequivalent to A 1= A + expression
A -= expression isequivalent to A 1= A - expression

These specia forms of the assignment operator are useful for efficient memory management
when assigning values to attributes that are aggregate types.

Examples of view assignment statements include:

real vl := 100.0 + BaseC BaseA.int_al * 10.0;

int_v2 = {I NTEGER} BaseC. real _cl;
ent_v3.str_attr :="'This is a view object’;
agg_v4[4] := BaseC. agg_cl[O0];

int_vb += BaseA.int_bl;
ent _v6 : = {BaseA} BaseB;
bool ean_v7 : = person IS man;
Note that examples 2 and 6 illustrate casting in expressions. Thisisexplained in section 3.13.1.4.
3.13.1.1 Coercion in Assignment Statements
coerci on = sel ect_coercion | subtype_coercion .
Coercion may be used on the | eft-hand side of an assignment statement to specify a particular type
that an attribute may take. Single braces are used to specify SELECT coercion and double braces

are used for subtype coercion.

SELECT coercion is used to specify that an attribute that is a SELECT type should be a particular
type from the selection:

sel ect _coercion = "'{'" (entity_ id | type_id) '}’
entity id = extended_id ;
type_id = extended_id ;

Example - if an entity geometric_item has an attribute geometry which may be a line, a bezier
curve, or ab-spline curve:

TYPE curve = SELECT(b_spline, bezier, line);
END_TYPE;

ENTITY geonetric_item
geonetry : curve;
END_ENTI TY,;

The target instance for the assignment operation could be coerced into being aline:

16

EXPRESS-X Reference Manual

VIEWvV : vdb::geonetric_item
FROM (e : bdb::source_entity)
WHEN TRUE;
BEG N_VI EW

{l'ine}geonetry : = e;
END_VI EW

When an attribute refers to a supertype that may be instantiated as one of many subtypes, subtype
coercion is used.

subtype_coercion = "{{" entity_id '}}’
Example - the gender of achild.

ENTI TY not her;
name . STRI NG
age . | NTEGER;

youngest : child;
END_ENTI TY;

ENTI TY child ABSTRACT SUPERTYPE OF (ONEOCF (boy, girl));
nane : STRI NG
age : | NTECER;

END_ENTI TY;

ENTI TY boy SUBTYPE OF (child);
toy : STRI NG
END_ENTI TY;

ENTITY girl SUBTYPE OF (child);
doll : STRING
END_ENTI TY;

Then the target instance for the assignment operator could be coerced into either a boy or girl
instance as appropriate:

VI EWm : vdb: : npt her;
FROM (...)

VWHEN ... ;
BEG N VI EW

| F new born.sex = 'MALE THEN

{{ boy }} youngest .toy := 'Powerful Gun'
ELSE

{{ girl }} youngest .doll := 'Beautiful Princess’
END | F;
END_VI EW

3.13.1.2 Enhancementsto Expressionsin Assignment Statements

EXPRESS-X extends EXPRESS expressions to introduce the | s keyword, casting, and references
to manually instantiated entity instances.

17

EXPRESS-X Reference Manual

expression = sinple_expression [rel _op_extended sinple_expression]
rel _op_extended = rel _op | IN| LIKE]| IS.

sinpl e_expression = term{ add _|ike_ op term}

add_like_op ="'+ | '"-" | OR| XOR.

term= factor { nmultiplication_|ike_ op factor }

multiplication_ like_op ="'*" | */' | DIV| MDD | AND| "||’

factor = sinple_factor ['**' sinple_factor]

sinmple_factor = aggregate_initializer | entity_constructor

| enuneration_reference | interval | query_expression
| ([unary_op] ("(' expression ')' | primary))
primary = literal | ([cast] qualifiable factor { qualifier })
literal = binary_literal | integer_literal | logical _litera
| real literal | string_litera

cast = '{' sinmple_types | entity_ id | type_id '}’

qgualifiable factor = attribute_ref | constant_factor | function_cal

| general _ref | instance_ref | population .
i nstance_ref = instance_id .
instance_id = '# extended_id .

3.13.1.3 ThelSOperator

The| s operator in EXPRESS-X is used to determine if a particular instance of an attribute is of a
particular type. It returns a boolean value.

rel _op_extended =rel _op| IN| LIKE]|] IS.

Example - isa particular instance of entity per son aso of entity type nan?
bool ean_v7 := person IS man;

3.13.1.4 Castingin Expressions

Attributes may be cast to a specified data type in an expressions using a cast operator. To do this,
the attribute is preceded by the casting data type in braces. Defined types and entity types are cast
using appropriate Vi Ewdeclarations and functions defined elsewhere in the mapping schema.

primary = literal | ([cast] qualifiable factor { qualifier })

cast = '{' sinple_types | entity id | type_id '}’

18

EXPRESS-X Reference Manual

Rules and restrictions:

a) Casting to defined data typesis only possible if a corresponding function is defined else-
where in the mapping schema.

b) Casting to entity typesisonly possibleif a corresponding Vi Ewdeclaration is defined el se-
where in the mapping schema, and the FROMV clause for this view contains a single entity
type which is the type to be cast (i.e., a conformance class 1 VI Ewdeclaration). Alter-
nately, a function can be defined that specifies the cast.

Example - the entity instance in the attribute sour ce_cur ve is cast to a bezi er _curve entity
instance. A VI Ew declaration must exist to carry out the conversion of the sour ce_cur ve entity
type to a bezi er _curve entity type. This Vi Ewdeclaration must contain the source_curve
entity type asthe only entity type in its FROMclause, and it must be a Vi Ewdeclaration that creates
instances of entity type bezi er _cur ve.

target _curve := {bezier_curve} source_curve;
3.13.1.5 ReferencetoaManually Instantiated Entity Instance

An expression can reference a previously created entity instance that was manually instantiated in
the GLOBAL section of a mapping schema or using an instantiation statement (see below). Thisis
done by placing a‘#’ before the identifier of the manually instantiated instance.

qualifiable factor = attribute ref | constant_factor | function_call

| general ref | instance_ref | population .
i nstance_ref = instance_id .
instance_id = "'# extended_id .

3.13.2 FROM Statements

fromstnm = fromhead when_clause BEG N stm { stnmt } END ';'

The FROM statement defines an iteration process for computing the values for one or more
attributes of a new view instance. It begins with a header that isidentical in syntax with the FROM
clause in the header of a vi Ewdeclaration. In this case, however, the FROM clause identifies the
entity instances to use to compute attribute values inside a vi Ewor COVPCSE declaration. The FROM
clause is followed by a WHEN clause, which is also identical in syntax with the WHEN clause in the
header of a i Ewdeclaration.

Logically, the FROVIstatement creates an iteration for each entity typelisted in its header. Each of
these entity typesis specified as an extended entity reference (i.e., variable : schema::entity type).
The iterations are nested in the order that the extended entity references are specified from left to
right. This has the effect of executing the WHEN clause for every combination of entity instances
for the entity types listed in the FROVistatement header. The variables in the extended entity refer-
ences for these entity types are initialized appropriately for each iteration as discussed for the
FROM clause above.

19

EXPRESS-X Reference Manual

The FROMstatement also logically defines a scope that is the scope of the variablesin the extended
entity references listed in the FROM statement header. Scopes are nested and a variable name is
resolved using the inner most scope that contains the variable name (as is done in programming
languages like Pascal and C).

An example of a FROMstatement is shown below:

FROM (c : sdb::child, w: sdb::woman)
VWHEN
(c IN w. of fspring);
BEG N
IF (c.sex = 'BOY")
f.children += {tdb:: boy}c;
ELSE
f.children += {tdb::girl}c;
END_| F;
END;

This FROVIstatement creates an iteration over all combinations of entities of typechi | d and woman
from the sdb schema. For each chi | d instance that islisted as an offspring of the woman instance,
the instance is cast as an instance of entity type boy or gi r| inthet db schema and added to the
chi I dr en aggregate defined in the encompassing scope, which aso defines the variablef .

3.13.3 WHEN Statements

when_stm = when_clause BEG N stm {stnt} END ';"'

A WHEN statement in the body of a vi Ewor COVPOSE declaration is similar to an | F statement. It
defines the conditions under which other statements should be executed. Thisis useful, for exam-
ple, when the value to be assigned to an attribute of aview instance is computed differently in var-
ious cases.

The WHEN statement begins with a WHEN clause as defined above for a Vi Ewdeclaration header.
This clause is followed by a BEG N block containing any number of statements. These statements
are executed when the WHEN clause evaluates to TRUE.

As an example of using the WHEN statement in the body of avi Ewdeclaration, consider the follow-
ing example mapping schema:

SCHEVA MAP Mappi ng_Schenm;
GLOBAL

DECLARE bdb | NSTANCE OF Base_Schenm;
DECLARE vdb | NSTANCE OF Vi ew_schenm;

END_GLOBAL;

VIEWvV : vdb::Viewentity
FROM (b : bdb:: BaseB)

WHEN (b.str_b2 = 'SUPPLIER);
BEG N_VI EW

VWHEN

20

EXPRESS-X Reference Manual

(EXI STS(b. conmpl ex_bl)
AND
(b.conplex_bl.int_al > 100)
)
BEG N
v.int_vl := b.conplex_bl.int_ail,
END;

v.str_v2 := BaseB.str_h2;
END_VI EW
END_SCHEMA VAP,

In this example, new view instances of type Vi ewent i t y are created in the view model from base
instances of type BaseB in the base model. For each of these new view instances, if the
conpl ex_b1 attribute of the base instance from which it is created exists and has an attribute
i nt _al with avalue greater than 100, then this value is used to initialize thei nt _v1 attribute of
the new view instance. If either of these conditions is false, then thei nt _v1 attribute of the new
view instanceisnot initialized. The st r _v2 attribute of new view instances is always initialized.

3.13.4 Initialize Statement

init_stnt = NEWgeneral _ref { qualifier } '
Conceptually, the initialize statement is similar to a constructor in the C++ programming lan-
guage. It creates a persistent instance of a non-primitive data type. The statement begins with the
keyword NEW This keyword is followed by the data type to be created, expressed as a variable
name with any necessary qualifications (e.g., attribute, group or index qualifiers). It is often useful
for initializing aggregates so that items can be added to them in a mapping.
Note that the FROVIclause in a VI Ewdeclaration header has an implicit initialize statement in it to
create anew view instance and assign it to the variable that is part of the extended entity reference
that specifies the view entity type for the vi Ewdeclaration.
An example of theinitialize statement is the following:

NEW f . chi | dr en;
This creates a new empty instance of the chi | dr en aggregate entity type used above.
3.13.5 DELETE Statement
del ete_stnt = del ete_instance_stnt

Conceptually, the DELETE statement is similar to a destructor in object-oriented programming lan-
guages. It deletes a persistent instance of a non-primitive datatype. The statement beginswith the
keyword DELETE.

del ete_instance_stnt = DELETE general ref {qualifier} *
When deleting an entity instance, the DELETE keyword is followed by the entity instance to be

deleted, expressed as a variable name with any necessary qualifications (e.g., attribute, group or
index qualifiers).

21

EXPRESS-X Reference Manual

An example of the DELETE statement is the following:

DELETE f enal e;

If f emal e is a variable inside the iteration of a FROM statement, for example, then the statement
deletes the instance that is currently bound to this variable.

3.13.6 Instantiation Statement

instantiation_stm = instantiation_clause .

Entity instances can be manually instantiated in the GLOBAL section of a mapping schema. They
can aso be manually instantiated inside Vi Ewand COVPOSE declarations using an instantiation
statement. The syntax isidentical to the syntax used to manually instantiate entity instancesin the
GLOBAL section of a mapping schema.

3.14 TheLogical Organization of a Member Mapping Declaration

A MEMBER declaration is the final new type of declaration that can appear in a mapping schema. It
isused to identify and logically group a set of attributes from aview entity type. This group helps
to establish a relationship between a base schema and a view schema. Such a logical group of
attributes typically has some practical meaning for the application systems that will use the view
once materialized.

For example, a MEMBER declaration could be used to define a group of al the entity instances
belonging to single assembly within a larger product model. The entity instances in this logical
group can then be treated as an atomic unit when appropriate (e.g., for check-in and check-out
functions). As another example, an information processing system may use the group of attributes
contained in a MEMBER declaration to decide when the values of a view model should be recom-
puted in response to changes in the corresponding base model. A third example of the use of a
MEMBER declaration is to specify which entity instances should be copied from a base model to a
view model to make a deep copy during the view materialization process.

The group of attributes in a MEMBER declaration is given a name and each attribute in the group is
given alabel. If one of the attributesin a group references another entity type, then this attribute
represents the root of atree of entity types. The MEMBER declaration has a clause that prunes the
branches of thistree.

menber _decl = nmenber_head BEG N_MEMBER [include_cl ause]
[exclude_clause]| END MEMBER ' ;'

menber _head = MEMBER general _head [fromhead] [when_cl ause]

general _head = ((nane_id FOR extended_entity ref) | extended_entity_ref)

nanme_id = sinple_id .

A MEMBER declaration begins with the keyword MEMBER followed by the name of an entity type
specified as an extended entity reference. This entity type contains the attributes that are the roots
for the trees of entities that make up the member group. Optionally, the extended entity reference
can be preceded by the keyword FOR and a name to uniquely identify the MEMBER declaration.

22

EXPRESS-X Reference Manual

Optionally, the MEMBER declaration includes a FROM clause and/or a WHEN clause. As for the cow
POSE declaration, if a FROVIclause is specified, it adds additional nested iterations to the top level
iteration for the entity type containing the root attributes of the member group. The WHEN clause,
if present, identifies the conditions that must be satisfied by a particular combination of entity
instancesin order to apply the body of the MEMBER declaration to it.

The specific attributes to be included in the member group are identified by the | NCLUDE clause.
The clause lists each attribute to include in the group, gives it a unique label, and specifies the
type of the attribute.

As mentioned above, if one of the included attributes references another view entity type, then
this attribute is the root of atree of entity types. The branches of this tree are pruned with the
EXCLUDE clause. The clause specifies the path through the tree to the attribute of an entity that is
to be pruned. Each of the paths to an attribute to prune is given a label, and the type of the
attribute to be pruned is specified.

i ncl ude_cl ause I NCLUDE nenber conponent { nenber _conponent } .
excl ude_cl ause = EXCLUDE nenber _conponent { menber_conponent } .
menber _conponent = menber_attr_stm | menber_when_stnt;

menber _when_stm

when_cl ause BEG N nmenber _conponent {nmenber_conponent}
END ' ;'

menber _attr_stm | abel ':' paraneter_type ':=" (SELF | attribute_ref)

{ qualifier } '

Optionally, a WHEN clause can be used with | NCLUDE and EXCLUDE to identify the conditions that
must be true for the | NCLUDE or EXCLUDE to be applied.

As an example consider the following MEMBER declaration:

MEMBER assenbly position_nmem FOR arm conmponent _assenbly_position ;
BEG N_MEMBER
| NCLUDE
attrl : cap_item
:= of f;
attr2 : context_dependent _shape_representation
.= cont ext _dependent _shape_representati on_ptr;

EXCLUDE
VWHEN
((SELF. of f IS shape_representation_rel ationship)
oR
((SELF. of f IS representation_relationship with_transpornation))
BEG N

attr101 : representation

.= off\representation_relationship.rep_1;
attr102 : representation

.= off\representation_relationship.rep_2;
attr103 : product _definition_shape

.= cont ext _dependent _shape_representati on_ptr.

represent ed_product _rel ation;

END;

23

EXPRESS-X Reference Manual

VWHEN
(SELF.of f 1S napped_iten);
BEG N
attr104 : representation
.= of f. mappi ng_sour ce. mapped_r epresent ati on;
END;
END_ MEMBER;

This MEMBER declaration defines a group of attributes from the view entity type
arm conponent _assenbl y_posi ti on. The name of this group is assenbl y_position_mem
This group includes two attributes from the ar m conponent _assenbl y_posi ti on entity type:
off and context_dependent _shape_representation_ptr. The group labels for these
attributes are attr1 and attr2, respectively. The EXCLUDE clause identifies cases where
attributes of the entity types referenced by these two attributes are to be pruned from the group.
3.15 Structureof a Mapping Schema
A typical structure for a mapping schemais to have one or more Vi EWmapping declarations (rep-
resenting pass one of the materialization process) in which all view instances are created, fol-
lowed by zero or more COVPOSE mapping declarations that compute values for the uninitialized
attributes in these view instances. At least one COVWPOSE mapping declaration is needed for each
view entity type with uninitialized attributes at the end of pass one. After all COVWPQSE mapping
declarations, all view instances in aview model are required to be valid. Finally MEMBER declara-
tions, if needed, are placed at the end of a mapping schema. Thisisillustrated below:

SCHEMVA MAP Mappi ng_Schenms;

GLOBAL

DECLARE sdb | NSTANCE OF source_Schenms;
DECLARE tdb | NSTANCE OF target_schens;

END_GLOBAL;

(* Beginning of Pass 1 - Create view instances *)

VIEWv1 : tdb::Viewentityl ;

END_VI EW

VIEWvV2 : tdb::Viewentity2 ;

END_VI EW

VIEWvn : tdb::Viewentityn ;

END_VI EW

(* Beginning of Pass 2 and | ater passes - Initialize the *)

24

EXPRESS-X Reference Manual

(* uninitialized attributes in the new view instances *)
COWOSE v1 : tdb::Viewentityl ;

END_COMPCSE;

COWOSE v2 : tdb::Viewentity2 ;

END_COVPCSE;

COWOSE vn : tdb::Viewentityn ;

END_COMPCSE;

(* Beginning of definition of attribute groups for *)
(* entity types in the view schena *)

MEMBER nenbershipl FOR vi : tdb::Viewentityi ;
ENb_ivElvBER;

MEMBER nenbershi p2 FOR vi : tdb::Viewentityi ;

END_MEMBER;

END_SCHEMA_NMAP;

25

EXPRESS-X Reference Manual

Appendix A: EXPRESS-X Example 1

Base Schema

(*

This schema defines the structure of the data stored in the base npdel.

i.e. entity nanes,
The key features are:

Entity person has an attribute data that
Entity woman has a list of children.

The gender of each child entity is given by

is

take the value BOY or G RL.
*)
SCHEMA source;
TYPE mor _f = SELECT (nan, woman);
END TYPE;
TYPE b_or_g = ENUMERATION OF (BOY, G RL);
END TYPE;

ENTI TY person;

soci al _security_nunber STRI NG (8)
name : STRI NG
age : REAL;
data : mor _f;
END_ENTI TY;
ENTITY man;
car STRI NG,
pocket contents : wallet;
END_ENTI TY;
ENTI TY wonman;
offspring : LIST [0:?] OF child;
handbag_contents : wallet;
END_ENTI TY;
ENTITY wal | et;
credit_card STRI NG,
numtwenties : | NTEGER
numtens | NTEGER,
num fives | NTEGER,;
total change : REAL;
END_ENTI TY;

attribute nanes and types.

either a man or wonman entity.

the attribute sex which nay

fixed

26

EXPRESS-X Reference Manual

ENTI TY chil d;
name : STRI NG
age . REAL;
sex : b_or_g;
END_ENTI TY;

END_SCHEMA;

View Schema

(*

This schema defines the structure of data in the view npdel.

The key features are:
A female entity has a |ist of dependants, which is an abstract supertype of
either a boy or girl entity.

*)

SCHEMA t ar get ;

ENTI TY nal e;
id : STRING
age . | NTEGER;
vehicle : STRI NG
wal l et : noney_bag;
END_ENTI TY;
ENTITY femal e;
id : STRING
age . | NTEGER;
children : LIST [0:7?] OF dependant;
purse . noney_bag;
END_ENTI TY;

ENTI TY dependant ABSTRACT SUPERTYPE OF (ONEOF (boy, girl));
age : | NTEGER;
nane : STRI NG

END_ENTI TY;

ENTI TY noney_bag;
plastic : STRI NG
total cash : REAL;
END_ENTI TY;

ENTI TY boy SUBTYPE OF (dependant);
END_ENTI TY;

ENTITY girl SUBTYPE OF (dependant);
END_ENTI TY;

END_SCHEMA;

27

EXPRESS-X Reference Manual

Mapping Schema

(*** Mappi ng_Schema ***)
SCHEMA_NMAP Mappi ng_Schens;

GLOBAL
DECLARE sdb | NSTANCE OF source; (*** instance of base schema ***)
DECLARE tdb | NSTANCE OF target; (*** instance of view schema ***)
END_GLOBAL;

(*** mal e view scope ***)
VIEWI| : tdb::male ;
FROM (m : sdb:: nman)

WHEN TRUE;

BEG N_VI EW

FROM (p : sdb:: person)

WHEN

((p.data IS sdb:: man)

AND

(p.data = m);
BEG N
id:= p.social _security_nunber;

END;
vehicle := mcar;
NEW I . wal | et ;

wal | et. plastic
wal | et.total cash :

m pocket contents.credit_card,;

m pocket _contents. numtwenties * 20.0 +
m pocket contents.numtens * 10.0 +

m pocket _contents.numfives * 5.0 +

m pocket _contents. total _change;

END_VI EW

END_SCHEMA_NAP;

28

EXPRESS-X Reference Manual

Appendix B: EXPRESS-X Example 2

Base Schema

Sane as in Exanple 1 in Appendix A

View Schema

Sane as in Exanple 1 in Appendix A

Mapping Schema

SCHEMA MAP Mappi ng_Schena2;

GLOBAL

DECLARE sdb | NSTANCE OF source;
DECLARE tdb | NSTANCE OF target;

#tdb::extra_child =
END_GLOBAL;

VIEWb : tdb::boy ;

FROM (¢ : sdb::child)

VWHEN
(c.sex = “BOY") ;

BEG N_VI EW
age : = {INTEGER} chil d. age;
name : = child. nane;

END_VI EW

VIEWg : tdb::girl ;

FROM (¢ : sdb::child)

VWHEN
(c.sex = "AR) ;

BEG N_VI EW
age : = {INTEGER} chil d. age;
name : = child. nane;

END_VI EW

VIEWf : tdb::fenale ;
FROM (w : sdb: : woran)
VWHEN TRUE;

BEG N_VI EW

FROM (p : sdb:: person)

VWHEN

tdb:: boy(2, 'Tony Blurb');

(*** instance of base schena ***)
(*** instance of view schena ***)

29

((p.data IS sdb: : woman)
AND
(p.data = w));
BEG N
id:= p.social _security_nunber;

END;

NEW f . chi | dr en;

FROM (¢ : sdb:: child)

VWHEN

(c I'N w. of fspring)
BEG N

IF (c.sex = "'BOY")

THEN

children += {tdb::boy}child;

ELSE

children += {tdb::girl}child;

END_ | F;
END;

children += #extra_child;

NEW f . pur se;

EXPRESS-X Reference Manual

purse.plastic := w handbag_contents. credit_card,;

purse.total cash :=

END_VI EW

END_SCHEMA_MAP;

w. handbag_cont ent s.
w. handbag_cont ent s.
w. handbag_cont ent s.
w. handbag_cont ent s.

numtwenties * 20.0 +
numtens * 10.0 +
numfives * 5.0 +

t ot al _change;

30

EXPRESS-X Reference Manual

Appendix C: EXPRESS-X Example 3

Base Schema

(*
EXPRESS schema defini ng Base Model
*)

SCHEMA sour ce_scheng,;

ENTITY famly;

fam |y _nane: STRI NG

menbers: LIST [1:7?] OF person;
END_ENTI TY;

ENTI TY person
ABSTRACT SUPERTYPE OF (ONEOF(nan, woman, child));
name : STRI NG
age : | NTECER,
END_ENTI TY;

ENTI TY man
SUBTYPE OF (person);
car : STRING
pocket contents : wallet;
END_ENTI TY;

ENTI TY woman
SUBTYPE OF (person);
handbag_contents : wallet;
END_ENTI TY;

ENTITY wal | et;
credit_card : STRING
numtwenties : | NTEGER

numtens . | NTEGER,
num fives . | NTEGER;
total change : REAL;

END_ENTI TY;

ENTITY child

SUBTYPE OF (person);
END_ENTI TY;
END_SCHEMA,

31

EXPRESS-X Reference Manual

View Schema

(*

EXPRESS schema defining View Mdel
*)

SCHEMA t ar get _schenm;

ENTITY fam | y_menber

ABSTRACT SUPERTYPE OF (ONEOF(husband, w fe, dependant));
famly_ id : STRI NG

nane . STRI NG
age . | NTEGER;
END_ENTI TY;

ENTI TY husband
SUBTYPE OF (fam |y_rmnenber);
wife is wife;
children : LIST[0:?] OF dependant;
vehicle : STRI NG

wal | et . noney_bag;

END_ENTI TY;

ENTITY wife

SUBTYPE OF (fam |y_rmnenber);

husband_i s . husband;
children : LIST[0:?] OF dependant;
purse . noney_bag;

END_ENTI TY;

ENTI TY dependant
SUBTYPE OF (fam |y_rmnenber);
father _is : husband;
nmot her _is: wife;
siblings : LIST[0:?] OF dependant;
END_ENTI TY;

ENTI TY noney_bag;
plastic : STRI NG
total cash : REAL;
END_ENTI TY;

END_SCHEMA;

32

Mapping Example

SCHEMA_MAP mappi ng_schens;

GLOBAL
DECLARE sdb | NSTANCE OF source_schens;
DECLARE tdb | NSTANCE OF target _target;
END_GLOBAL;

VIEWh : tdb:: husband ;
FROM (f : sdb::family, m: sdb::mn)
VWHEN
(mIN f.menmbers);
BEG N_VI EW
famly id := '"Famly_of '
nane := m nane;
age m age;
vehicle := mcar;

NEW h. wal | et ;
wal | et. plastic
wal | et.total cash :

m pocket _contents.
m pocket _contents.
m pocket _contents.
m pocket _contents.
m pocket _contents.

END_VI EW

VIEWwi fe : tdb::wife ;
FROM (f : sdb::family, w: sdb::wonman)
VWHEN

(w IN f.menbers);

EXPRESS-X Reference Manual

(*** instance of base schenma ***)
(*** instance of view schema ***)

+ f.fam ly_nane;

credit _card,
numtwenties * 20.0 +
numtens * 10.0 +
numfives * 5.0 +

t ot al _change;

BEG N_VI EW
famly id :="Famly_of ' + f.famly_nane;
name : = w. nane;
age = w. age;

NEW wi f e. pur se;

purse.plastic := w handbag_contents. credit_card,;

purse.total cash := w handbag_contents.
w. handbag_cont ent s.
w. handbag_cont ent s.
w. handbag_cont ent s.

END_VI EW

VIEWd : tdb::dependant ;
FROM (f : sdb::family, ¢ : sdb::child)
VWHEN

(c IN f.menbers);

numtwenties * 20.0 +
numtens * 10.0 +
numfives * 5.0 +

t ot al _change;

33

EXPRESS-X Reference Manual

BEG N_VI EW
famly id :="Famly_of ' + f.famly_nane;
name : = c.nane;
age : = c. age;

END_VI EW

COWOSE h : tdb:: husband ;

WHEN TRUE;

BEG N_COVPCSE

FROM (w : tdb::wife)

VWHEN

(h.famly_id = wfamly_id);
BEG N

wife is :=w
END;

NEW h. chi | dren;
FROM (d : tdb::dependant)
VWHEN
(h.famly_id = d.famly_id);
BEG N

children += d;
END;
END_COVPCSE;
COWOSE w : tdb::wife ;
WHEN TRUE;
BEG N_COVPCSE
FROM (h : tdb:: husband)
VWHEN
(w.famly_ id = h.famly_id);
BEG N
husband_is : = h;
END;
NEW w. chi | dr en;
FROM (d : tdb::dependant)
VWHEN
(w.famly_ id = d.famly_id);
BEG N

children += d;

EXPRESS-X Reference Manual

END;

END_COVPCSE;

COWPCSE d : tdb::dependant ;
VWHEN TRUE;
BEG N_COWPCSE

FROM (h : tdb:: husband)
VWHEN
(h.famly_id = d.famly_id);
BEG N
father _is := h;
END;
FROM (w : tdb::wife)
VWHEN
(w.famly_ id = d.famly_id);
BEG N
mother _is 1= w,
END;
NEW d. si bl i ngs;
FROM (d1 : tdb::dependant)
VWHEN
(di.famly_id = d.famly_id)
AND

NOT (d1 = d);
BEG N

siblings += di;
END;

END_COVPCSE;

END_SCHEMA_MAP;

35

EXPRESS-X Reference Manual

Appendix D: EXPRESS-X Example 4

Base Schema

SCHEMA config control design; (* AP203 Al M Schema *)

END_SCHEMA;

View Schema

SCHEMA ap203_arm schenm; (* AP203 ARM Schema *)

ENTITY arm part;

(* PO NTERS | NTO THE Al M *)
of f : product;

product category relationship _ptr : product_category rel ationship;
product rel ated_product _category ptr : product _rel ated_product category;

(* USER DEFI NED ATTRI BUTES *)
arm key : STRI NG
arm user_nanme : STRI NG
arm product _description : STRI NG
arm part _nomenclature : STRI NG
arm part _nunber : STRI NG
arm standard_part _indicator : STRI NG
arm part_type : STRI NG

(* RELATI ONSHI PS TO OTHER ARM OBJECTS *)
armto _alternate part : LIST [0:?] OF armpart;
armis_alternate part for : LIST [0:?] OF armpart;
armto _part_version : LIST [1:?] OF armpart_version;
(* PO NTERS FROM OTHER ar m OBJECTS *)
armto_person : armperson;
armto_application_context : LIST [0:?] OF armapplication_context;

UNI QUE
URL : armkey;
END_ENTI TY;

END_SCHEMA;

36

EXPRESS-X Reference Manual

Mapping Schema

SCHEVA MAP AP203_ai mRar m mappi ng_schena; (* AP203 AlM To ARM Mappi ng *)

GLOBAL
DECLARE ai m db | NSTANCE OF config _control _design
DECLARE arm db I NSTANCE OF ap203_ar m schenms;
END_GLOBAL;

VIEWnp : armdb::armpart ;
FROM (p : ai mdb:: product)
VWHEN TRUE

BEG N_VI EW

of f := p;
arm product _description := p.description;

FROM (prpc : ai mdb::product_rel ated_product _cat egory)
WHEN (p I N prpc. products);

BEG N
armpart_type := NVL(prpc.nane, ') + ' - ' +
NVL(pr pc. description, '');
product _rel at ed_product _category_ptr := prpc;
VWHEN (pr pc\ product _cat egory. name = 'standard_part');
BEG N
arm st andar d_part _i ndi cat or
:= NVL(prpc\product_category.nane, '') + ' - "' +
NVL(pr pc\ product _cat egory. description, '');
END;
END;

FROM (prpc : ai mdb::product_rel ated_product _cat egory,
pcr : ai mdb:: product _category_rel ationshi p)
VWHEN
(p I'N prpc. products)
AND
(prpc\ product _cat egory
= pcr.sub_category);
BEG N
product _category_relationship_ptr := pcr
END;

arm part_nonencl ature : = p.nane;

arm part _numnber p.id;

END_VI EW

COWGCSE np : armdb::armpart ;
VWHEN TRUE
BEG N_COWPCSE

37

EXPRESS-X Reference Manual

NEW np. arm t o_appl i cati on_cont ext;
FROM (nac : arm.db::arm application_context,
pc : ai mdb:: product_context)

VWHEN
(pc IN np.off.frame_of _reference)
AND
(pc\application_context_element.frame_of reference
= nac. of f);
BEG N
armto_application_context += nac;
END;

NEW np.armto_alternate_part;
FROM (nap : armdb::armalternate_part)

VWHEN
(nap. of f. base
= np.off);
BEG N
armto_alternate_part += np;
END;

NEWnp.arm.is_alternate_part_for;
FROM (nap : armdb::armalternate_part)

VWHEN
(nap.off.alternate
= np.off);
BEG N
armis_alternate_part_for += np;
END;

NEW np. arm to_part_version;
FROM (npv : arm.db::arm part_version)
VWHEN (npv. of f\ product _definition_formation.of _product = np.off);
BEG N
armto_part_version += arm part_version;
END;

FROM (arm person : arm.db::arm person)

VWHEN
EXI STS(ar m person. armto_person_item
AND
(np N arm person.armto_person_item;
BEG N
armto_person := arm_person;
END;

armkey := NVL(np.arm part_numnber, 'NO VALUE G VEN);
arm.user _nanme := NVL(np.off.nane, 'NO VALUE G VEN);

END_COVPCSE;

38

EXPRESS-X Reference Manual

MEMBER part _nmenbership FOR p : armdb::arm part
BEG N_MEMBER
| NCLUDE
attrl : product
:= of f;
attr2 : product_rel at ed_product _cat egory
: = product _rel ated_product _category_ptr;
attr3 : product_category_rel ationship
: = product _category_relationship_ptr;

EXCLUDE
attr101 : SET [1:?] OF product_cont ext
.= off.frame_of _reference;
attr102 : SET [1:7?] OF product

: = product _rel at ed_product _category_ptr. products;
attr103 : product_category

: = product _category_rel ationshi p_ptr.category;
END_MEMBER;

END_SCHEMA MAP; (* End OF ap203_ai nRar m mappi ng_schema *)

39

EXPRESS-X Reference Manual

Appendix E: EXPRESS-X Example5

Base Schema

Sane as in Exanple 1 in Appendix A

View Schema

Sane as in Exanple 1 in Appendix A

Mapping Schema

Sane as in Exanple 1 in Appendix A

Updating Schema

(* This exanple shows how to propagate the updates in view nodel

to the source nodel
*)
(*** Updating_Schena ***)
SCHEMA MAP Updat i ng_Schens;

GLOBAL
DECLARE sdb | NSTANCE OF source
DECLARE tdb | NSTANCE OF target;
END GLOBAL

(*** nal e update scope ***)

COWCOSE tm: tdb::nale ;
VWHEN TRUE
BEG N_COWPCSE
FROM (p : sdb::person, m: sdb
VWHEN
((p.social _security number =
AND
(p.data IS sdb:: man)
AND
(p.data = m);
BEG N
p. social _security nunber :=
mcar := tmvehicle;

back

(*** instance of base schena ***)
(*** instance of view schena ***)

;. man)

tmid)

tmid;

40

EXPRESS-X Reference Manual

m pocket _contents.credit_card := tmwallet.plastic;

(* Notice that the follow ng values can not be uni quely deci ded.
The followi ng only shows one possi bl e sol ution.

*)

m pocket _contents.numtwenties := tmwallet.total _cash / 20;
m pocket _contents. num_tens
= (tmwal let.total _cash-20 * m pocket _contents. numtwenties) / 10;
m pocket _contents. numfives
= (tmwallet.total _cash - 20 * m pocket _contents. numtwenties
- 10 * m pocket _contents.numtens) / 5 ;
m pocket _contents. total _change
= tmwallet.total _cash - 20 * m pocket_contents. numtwenties
- 10 * m pocket _contents. numtens
- 5 * mpocket_contents. numfives ;

END;
END_COVPCSE;

END_SCHEMA_MAP;

41

F.1 Tokens
F.1.1 Keywords
0 | ABS = 'abs'
1 | ABSTRACT = 'abstract'
2 | ACOS = 'acos' .
3 | AGCGREGATE = 'aggregate'
4 | ALIAS = "alias'
5] AND = 'and' .
6 | ANDOR = 'andor'
7 | ARRAY = 'array'
8| AS = 'as' .
9] ASIN = "asin'
10 | ATAN = 'atan'
11 | BAG = 'bag'
12 | BEA N = 'begin'
13 | BINARY = 'binary'
14 | BLENGTH = ' bl engt h'
15 | BOOLEAN = ' bool ean'
16 | BY = 'by'
17 | CASE = 'case'
18 | CONSTANT = 'constant'’
19 | CONST_E = 'const_e'
20 | CONTEXT = 'context'
21 | COs = 'cos'
22 | DERIVE = 'derive'
23 | DV = "'div
24 | ELSE = 'el se'
25 | END = 'end'
26 | END ALIAS = '"end_ali as'
27 | END _CASE = 'end_case'
28 | END_CONSTANT = 'end_constant'
29 | END CONTEXT = 'end_context'
30 | END ENTITY = "end_entity'
31 | END _FUNCTION = 'end_function'
32 | ENDIF = "end_if" .
33 | END LOCAL = 'end_| ocal"’
34 | END MODEL = 'end_nodel’
35 | END _PROCEDURE = 'end_procedure'
36 | END REPEAT = 'end_repeat’
37 | END RULE = "end_rul €'
38 | END SCHEMA = 'end_schenwn'
39 | END TYPE = 'end_type'
40 | ENTITY = "entity'
41 | ENUMERATION = 'enuneration'

EXPRESS-X Reference Manual

Appendix F: EXPRESS L anguage Syntax

42

42
43
44
45
46
47
48
49

50
51
52
53
54
55
56
57
58
59

60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77
78
79

80
81
82
83
84
85
86
87
88
89

90

ESCAPE = ' escape’
EXI STS = 'exists’
EXP = 'exp'

FALSE = 'fal se’
FI XED = ' fi xed'
FOR = "for’

FORVAT = 'fornat'
FROM = ' from

FUNCTI ON = ' function’
CENERI C = 'generic'
H BOUND = ' hi bound'
HI I NDEX = ' hi i ndex’

IF ="if"

IN="in'

I NSERT = '"insert’

| NTEGER = "integer’
I NVERSE = 'i nverse'
LENGTH = 'l ength’
LIKE = "Iike'

LIST = "list'
LOBOUND = ' | obound'
LA NDEX = ' oi ndex'
LOCAL = 'l ocal’
LOG = 'l og'

LOGLO = 'l o0gl0'
LO&X = 'l o0g2'

LOGd CAL = '| ogi cal’
MOD = ' nod’

MODEL = ' nodel’

NOT = ' not'
NUMBER = ' nunber'
NVL = "nvl'

ODD = ' odd'

OF = ' of"'

ONECOF = ' oneof"

OPTI ONAL = 'optional"’
OR = "or'

OTHERW SE = ' ot herwi se'

Pl ="pi’

PROCEDURE = ' procedure’
QUERY = 'query'

REAL = 'real’

REFERENCE = 'reference'
REMOVE 'renove'
REPEAT 'repeat’
RETURN ‘return’
ROLESOF = 'rol esof’
RULE = "rul e’

SCHEMA = ' schenn’

EXPRESS-X Reference Manual

43

EXPRESS-X Reference Manual

91 | SELECT = 'sel ect

92 | SELF = 'self’

93 | SET = 'set

94 | SIN="sin'

95 | SIZECF = 'si zeof

96 | SKIP = 'skip'

97 | SQRT = 'sqrt

98 | STRING = "string

99 | SUBTYPE = 'subtype
100 | SUPERTYPE = 'supertype
101 | TAN = "tan’

102 | THEN = 'then’

103 | TO="to

104 | TRUE = "true

105 | TYPE = '"type

106 | TYPECF = 'typeof

107 | UNIQUE = 'unique'

108 | UNKNOWN = ' unknown
109 | UNTIL = "until"’

110 | USE = 'use

111 | USEDIN = 'usedin’

112 | VALUE = 'val ue'

113 | VALUE_IN = "value_in'
114 | VALUE_UN QUE = 'val ue_uni que
115 | VAR = 'var' .

116 | WHERE = 'where

117 | WH LE = "while'

118 | XOR = 'xor'

F.1.2 Character classes

119 | bit ="'0" | "1
120 | digit ='0" | "2 | 2" | *3 | ‘4 | '5" | ‘6 | ‘7| '8 |9
121 | digits =digit { digit }
122 | encoded_character = octet octet octet octet.
123 | hex_digit =digit | "a" | 'b" | "¢ | 'd | e | "f' .
124 | letter ='a | 'b" | "¢ | "d | ‘e | ‘f* | g | "h | it]]t
L S 14 I 2 O ¢ Y Y AN« Y S (RN B
ut | vt tw T x ty] tz.
125 | I paren_not_star = '(' not_star
126 | not_I| paren_star = not_paren_star | ')' .
127 | not_paren_star = letter | digit | not_paren_star_special
128 | not _paren_star_quote_special ="!" | """ | "# | '$ | "% | '&
A A N I B IR
R R B B B A IR
L R T D R D
I I I S A

129 | not _paren_star_special = not_paren_star_quote_special | """’

EXPRESS-X Reference Manual

130 | not_quote = not_paren_star_quote_special | letter | digit | "(" |
DA
131 | not_rparen = not_paren_star | "*' | "('
132 | not_star = not_paren_star | "(" | ')’
133 | octet = hex_digit hex_digit
134 | special = not_paren_star_quote_special | "(" | ") | '* e
135 | star_not_rparen = '*' not_rparen
F.1.3 Lexical Elements
136 | binary_ literal ="% bit { bit }
137 | encoded_string_literal = '"' encoded_character { encoded_character }

138 | integer_literal = digits .

139 | real _literal =digits '." [digits] ["e [sign] digits]

140 | sinple_id = letter { letter | digit | "' } .

141 | simple_string literal =\g{ (\q\q) | not_quote | \s | \o} \qg.

F.1.4 Remarks

142 | enbedded_remark = '(*' { not_| paren_star | |paren_not_star
star_not_rparen | enbedded remark } '*)

143 | remark = enbedded_remark | tail _remark .

144 | tail _remark ='--* { \a | \s | \o} \n.

F.1.5 Interpreted Identifiers

145 | attribute_ref = attribute_id .
146 | constant_ref = constant_id .

147 | entity_ref = entity_id .

148 | enuneration_ref = enuneration_id .
149 | function_ref = function_id .

150 | paraneter_ref = paraneter_id .
151 | procedure_ref = procedure_id .
152 | schenma_ref = schena_id .

153 | type_l abel _ref = type_label _id .
154 | type_ref = type_id .

155 | variable_ref = variable_id .

F.2 Grammar Rules

156 | abstract_supertype_decl arati on = ABSTRACT SUPERTYPE
[subtype_constraint] .
157 | actual _paraneter_list = ' (' paranmeter { ',' paraneter } ')’

45

158
159

160
161
162
163
164

165

166
167
168
169

170
171
172
173
174
175
176
177
178

179

180
181
182

183
184
185

186
187
188
189

190
191
192
193
194

195

EXPRESS-X Reference Manual

add_like_ op ="'+ | '"-'" | OR| XOR
aggregate_initializer ="'[" [element { ',

element }] ']’

aggregate_source = sinpl e_expression .

aggregate_type = AGGREGATE [':' type_l abel] OF paraneter_type

aggregation_types = array_type | bag_type | list_type | set_type

al gorithmhead = { declaration } [constant_decl] [|ocal _decl]

alias_stmt = ALIAS variable_id FOR general _ref { qualifier } ;'
stnt { stm } END_ALIAS ';' .

array_type = ARRAY '[' bound_spec ']" OF [OPTIONAL] [UNI QUE]

base_type .
assignment _stnt = general _ref { qualifier } '":=" expression ';"'
attribute_decl = attribute_id | qualified_attribute
attribute_id = sinple_id .
attribute qualifier ="'." attribute_ref

bag type = BAG [bound_spec] OF base_type

base_type = aggregation_types | sinple_types | naned_types .

bi nary_type = BINARY [wi dt h_spec]

bool ean_t ype = BOCLEAN .

bound_1 = nuneri c_expression

bound_2 = nuneric_expression

bound_spec = '[' bound_1 ':' bound_2 ']’

built_in_constant = CONST_E | PI | SELF | "?

built _in_function = ABS | ACOS | ASIN | ATAN | BLENGTH | COS
EXI STS | EXP | FORVAT | HI BOUND | HI I NDEX
LENGTH | LOBOUND | LONDEX | LOG | LO= |
LOGIO | NVL | ODD | ROLESOF | SIN | SI ZEOF
SQRT | TAN | TYPECF | USEDIN | VALUE | VALUE_IN
VALUE_UNI QUE .

built_in_procedure = I NSERT | REMOVE .

case_action = case_label { ',' case_label } '":" stm

case_| abel = expression .

case_stnt = CASE selector OF { case_action } [OTHERWSE ':' stnt]
END _CASE ' ;'

conmpound_stm = BEG N stnt { stnt } END ';'

constant _body = constant_id ':' base_type ':='" expression ;'

const ant _decl = CONSTANT constant _body { constant_body }

END_CONSTANT ' ;'

constant _factor = built_in_constant | constant_ref
constant _id = sinple_id .
constructed_types = enuneration_type | select_type

declaration = entity_decl | function_decl | procedure_decl
type_dec
derived_attr = attribute_decl ':' base_type ':=" expression ';'

derive_clause = DERI VE derived_attr { derived_attr }

domain_rule = [label ':'] expression

el ement = expression | repetition |

entity _body = { explicit_attr } [derive_clause] [inverse_clause]
[unique_clause] [where_clause]

entity_constructor = entity_ ref '"(' [expression { ',

expression} |

46

196
197
198
199

200
201

202
203

204
205
206

207

208

209

210
211

212

213

214
215

216
217
218
219

220

221
222

223
224
225
226
227
228
229

230

EXPRESS-X Reference Manual

L
entity_decl entity head entity_body END ENTITY;
entity head ENTITY entity_id [subsuper] ';°'
entity id = sinple_id .

enuneration_id = sinple_id .

enuneration_reference = [type_ref] enuneration_ref
enuner ati on_type = ENUVERATION OF ' (' enunmeration_id

{ "," enuneration_id } ")’
escape_stnt = ESCAPE ';'

explicit_attr = attribute_decl { ',' attribute_decl } ':' [OPTI ONAL]

base type ';
expressi on = sinpl e_expression [rel _op_extended sinpl e_expressi on]
factor = sinple_factor ["**' sinple_factor]
formal _paraneter = paraneter_id { ',' paraneter_id }

par anmet er _type

(built_in_function | function_ref)
[actual _paraneter_list]
function_head [al gorithm head] stnm { stnt }

function_cal

functi on_dec

END_FUNCTION ' ;"
function_head = FUNCTION function_id [' (' formal _paraneter
{ ';" formal _parameter } ")'] ':' paraneter_type

function_id = sinple_id .
general i zed_types = aggregate_type | general _aggregation_types
generic_type

general _aggregation_types = general _array_type | general _bag type
general _list_type | general _set_type

general _array_type = ARRAY [bound_spec] OF [OPTIONAL] [UN QUE]

par anet er _type
general _bag_type = BAG [bound_spec] OF paraneter_type
general _list_type = LIST [bound_spec] OF [UN QUE]
par anet er _type
general _ref = parameter_ref | variable_ref
general _set_type = SET [bound_spec] OF paraneter_type

generic_type = GENERIC [':' type_|l abel]
group_qualifier = "\"' entity_ref
if_stnt = IF expression THEN stnt { stm } [ELSE stnt { stm }]
END IF ' ;"
i ncrenent = numeric_expression
i ncrenent _control = variable_id ':=" bound_1 TO bound_2 [BY
i ncrenent |
ndex = numeric_expression
ndex_1 = index .
ndex_2 = index .
ndex_qualifier = "'[" index_1 [':' index 2] '"]'

nt eger _type = | NTEGER .

nterface_specification = reference_cl ause | use_cl ause

nterval = '{' interval _low interval _op interval _iteminterval _op
i nterval _high '}’

nt erval _high = sinple_expression .

47

231
232
233
234

235
236
237
238

239

240

241
242
243
244
245
246
247
248
249

250

251
252
253
254
255
256
257

258

259

260

261

262
263

264
265
266
267

268
269

EXPRESS-X Reference Manual

interval _item = sinpl e_expression .
i nterval _| ow = sinpl e_expression .

interval _op ="'< | '<=

inverse_attr = attribute_decl '":' [(SET | BAG) [bound_spec] OF]
entity ref FOR attribute_ref ;'

i nverse_clause = INVERSE i nverse_attr { inverse_attr }

| abel = sinple_id .
list_type = LIST [bound_spec] OF [UNIQUE | base_type
literal = binary_literal | integer_literal | logical _literal
real _literal | string_litera
| ocal _decl = LOCAL |ocal _variable { |ocal _variable } END LOCAL ';'
| ocal _variable = variable_id { ', variable_id } ':'
[':=" expression] ';'
| ogi cal _expressi on = expression
logical literal = FALSE | TRUE | UNKNOW .
| ogi cal _type = LOGQ CAL .
multiplication_ like_op ="'*" | '/' | DIV| MDD | AND| "||’
naned_types = entity_ref | type_ref
naned_type_or_renane = nanmed_types [AS (entity_ id | type_id)]
null _stnmt =";" .
nunber _type = NUMBER .
nuneri c_expression = sinpl e_expression .

par anet er _type

one_of = ONEOF ' (' supertype_expression { ',

N
parameter = expression
paranmeter_id = sinple_id .
paranmeter_type = generalized_types | naned_types | sinple_types .
popul ation = entity_ref
preci si on_spec = numeric_expression
primary = literal | (qualifiable factor { qualifier })
procedure_call _stm = (built_in_procedure | procedure_ref)

[actual _paranmeter_list] ';'

procedure_decl = procedure_head [algorithmhead] { stnt }
END_PROCEDURE ' ;'
PROCEDURE procedure_id ['(' [VAR] formal_paraneter
{ ";" [VAR] formal _parameter } ")"] ';'

supertype_expression }

pr ocedur e_head

procedure_id = sinple_id .
qualifiable factor = attribute_ref | constant_factor | function_cal
| general _ref | popul ation.
qualified_attribute = SELF group_qualifier attribute_qualifier
qualifier = attribute_qualifier | group_qualifier
| index_qualifier
guery_expression = QUERY ' (' variable_id '<*' aggregate_source '|'
| ogi cal _expression ")’
real _type = REAL [' (' precision_spec ')"']
referenced_attribute = attribute_ref | qualified_ attribute
reference_cl ause = REFERENCE FROM schema_ref [' (' resource_or_renamne
{ '," resource_or_renane } ')] ";'
rel_op ="'<" | '">" | '"<='" | '">=" | '<>'" | =] it | =t
rel _op_extended = rel_op | IN| LIKE

48

270

271

272

273
274
275

276
277

278

279

280

281
282
283
284
285
286
287
288

289

290
291

292
293
294
295
296

297

298
299

300
301

302
303

EXPRESS-X Reference Manual

rename_id = constant_id | entity_id | function_id | procedure_id

type_id .
repeat _control = [increment_control] [while_control]
[until_control]
repeat _stm = REPEAT repeat_control ';' stnt { stnmt } END_REPEAT

repetition = nuneric_expression

resource_or_rename = resource_ref [AS renane_id]

resource_ref = constant_ref | entity_ref | function_ref
procedure_ref | type_ref

return_stm = RETURN['(' expression ')'] ';'

rule_decl = rule_head [algorithmhead] { stnt } where_cl ause
END RULE ' ;'
rule_head = RULE rule_id FOR ' (' entity ref { '," entity_ref } ")’

rule_id = sinple_id .

schema_body = { interface_specification } [constant_decl]
{ declaration | rule_decl }
schema_decl = SCHEMA schema_id ';' schena_body END SCHEMA ' ;'
schema_id = sinple_id .
sel ector = expression .
sel ect _type = SELECT ' (' naned_types { ',' naned_types } ')’
set _type = SET [bound_spec] OF base_type
sign ="+ | '"-" .
simpl e_expression = term{ add_like_op term}
simple_factor = aggregate_initializer | entity_constructor
enuneration_reference | interval
guery_expression | ([unary_op] ("(' expression
") | primary))
simple_types = binary_type | boolean_type | integer_type
| ogi cal _type | nunber_type | real _type
string_type

skip_stm = SKIP ';"
stm = alias_stnmt | assignment_stnt | case_stnt | conpound_stnt

escape_stnt | if_stm | null_stmt | procedure_call _stm
repeat _stm | return_stnt | skip_stm
string_literal = sinple_string_literal | encoded_string litera

string_type = STRING[w dth_spec]

subsuper = [supertype_constraint] [subtype_declaration]

subtype_constraint = OF ' (' supertype_expression ")' .

subtype_decl aration = SUBTYPE OF ' (' entity ref { '," entity_ref }
Ty

supertype_constraint = abstract_supertype_decl arati on
supertype_rule

supertype_expression = supertype_factor { ANDOR supertype_factor }

supertype_factor = supertype_term{ AND supertype_term}

supertype_rule
supertype_term

SUPERTYPE subt ype_constr ai nt

entity_ref | one_of | '(' supertype_expression
1) 1 .

syntax = schema_decl { schema_decl }

term= factor { multiplication_like_op factor }

49

304

305
306
307
308
309

310
311

312
313

314
315
316
317
318

EXPRESS-X Reference Manual

type_decl = TYPE type_id '=" underlying_type ';' [where_cl ause]

END TYPE ' ;'
type_id = sinple_id .
type_l abel = type_label id | type_label _ref
type_label id = sinple_id .
unary_op ="+ | '-'" | NOT .
underlying_type = constructed_types | aggregation_types
simple_types | type_ref

uni que_cl ause = UNIQUE unique_rule ";" (unique_rule ";" }
unique_rule = [label ":'"] referenced_attribute { ','
referenced_attribute }

until _control = UNTIL expression .

use_cl ause = USE FROM schema_ref [' (' naned_type_or_renane
{ '," named_type_or_renane })"] ';'

variable_id = sinple_id .

where_cl ause = WHERE domain_rule ";' { domain_rule ';" }

whi l e_control = WHILE | ogi cal _expression

wi dt h = numeri c_expression .
width_spec = '"(' width ')" [FIXED]

50

EXPRESS-X Reference Manual

Appendix G: EXPRESS-X Extensionsto the EXPRESS L anguage

G.1 TokensAdded

BEA N COVMPCSE = ' begi n_conpose'
BEG N MEMBER = ' begi n_nenber"'
BEA N VI EW = ' begi n_vi ew
COWCOSE = ' compose'

DECLARE = 'decl are'

DELETE = 'del ete'

END COVMPCSE = ' end_conpose'
END GLOBAL "end_gl obal’

END MEMBER = 'end_nenber'

END SCHEMA MAP = 'end_schena_nap'
END VI EW = 'end_vi ew

EXCLUDE = ' excl ude'

GLOBAL = ' gl obal’

| NSTANCE = 'i nstance'
IS ="is" .

MEMBER = ' nenber’
NEW = ' new

SCHEMA MAP = ' schena_nap'
VIEW = 'view
VWHEN = ' when'

G.2 Syntax RulesAdded

cast = '{' sinple_types | entity id | type_id '}’
coerci on = sel ect_coercion | subtype_coercion .

conpose_decl = conpose _head [algorithmhead] stnt {stnt}
END_COWPCSE ' ;'

COWPCSE general _head [from head] when_cl ause
BEG N_COWPCSE .

conpose_head

del ete_instance_stn = DELETE general ref { qualifier } *;’
delete_stnt = delete_instance_stm

excl ude_cl ause = EXCLUDE nenber conponent { nenber_conponent }

extended entity ref = wvariable id ':' parameter_type .
extended id = [schema_id '::'] sinple_id .
fromhead = FROM ' (' extended entity ref { ',' extended entity ref } ')’

51

fromstm

EXPRESS-X Reference Manual

= from head when_cl ause BEG N stm { stnmt } END ';"

general _head = ((nane_id FOR extended_entity ref) | extended_entity_ ref)

gl obal _decl = GLOBAL { schena_instance_decl | instantiation_clause }
END GLOBAL ' ;'
i ncl ude_cl ause = | NCLUDE nenber _conponent { nenber_conponent }
init_stm = NEWgeneral ref { qualifier } ";'
instance_id = '# extended_id .
i nstance_ref = instance_id
i nstanti ation_clause = instance_id '='" entity_constructor ';'
instantiation_stm = instantiation_clause;
menber _attr_stnmt = [label ":'] paraneter_type ':=" (SELF | attribute_ref)

{ qualifier } *;

menber _conponent = menber_attr_stm | nmenber_when_stnt;

menber _decl = menber_head BEA N _MEMBER [include_cl ause]

[exclude_clause | END _MEMBER ' ;'

menber _head = MEMBER general _head [fromhead] [when_cl ause]

menber _when_stnmt = when_cl ause BEA N nmenber _conponent { menber_conponent }

name_id =

END ' ;'

simple_id .

schema_i nst ance_decl = DECLARE schena_instance_id | NSTANCE OF schenma_id

schema_instance_id = sinple_id .

sel ect _coercion = "'{'" (entity_id | type_id) "}’

subtype_coercion = '{{' entity_id '}}’

vi ew decl = view head [algorithmhead] { stnt } END VIEW' ;'
vi ew_head = VI EW general head from head when_cl ause BEG N VI EW .
when_cl ause = WHEN domain_rule ';' { domain_rule ';"' }

when_stnmt = when_clause BEA N stnt { stnt } END ';"'

52

EXPRESS-X Reference Manual

G.3 Madifications or Extensions To The Existing EXPRESS Syntax Rules

assignment _stnt = [coercion] general _ref { qualifier } (':=" | "+= | '-=")
expression *;’
decl aration = conpose_decl | entity_decl | function_decl | nenber_dec
| procedure_decl | type_decl | view decl
entity id = extended_id .
primary = literal | ([cast] qualifiable factor { qualifier })

qgqualifiable_factor = attribute_ref | constant_factor | function_call |
general _ref | instance_ref | population .

rel _op_extended =rel _op | IN| LIKE]| IS.

schema_body = { interface_specification } [constant_decl] { global _decl }
{ declaration | rule_decl }

schenma_decl SCHEMA MAP schema_id ‘;’ schema_body END SCHEVA MAP *;°

stm = alias_stnmt | assignnment_stnt | case_stnt | conmpound_stnt |
delete_stnt | escape_stnt | fromstnt | if_stm | init_stnt |
instantiation_stnt | null_stnt | procedure_call_stnt | repeat_stnt |
return_stm | skip_stnt | when_stm

type_id = extended_id .

53

	Table of Contents
	1 Introduction to EXPRESS-X
	2 Fundamental Principles
	3 Language Specification Syntax
	Appendix A: EXPRESS-X Example 1
	Appendix B: EXPRESS-X Example 2
	Appendix C: EXPRESS-X Example 3
	Appendix D: EXPRESS-X Example 4
	Appendix E: EXPRESS-X Example 5
	Appendix F: EXPRESS Language Syntax
	Appendix G: EXPRESS-X Extensions to the EXPRESS Language

